RF PROPAGATION INVESTIGATIONS AT 915/2400 MHz IN INDOOR CORRIDOR ENVIRONMENTS FOR WIRE- LESS SENSOR COMMUNICATIONS
نویسندگان
چکیده
Propagation of Radio Frequency (RF) waves in indoor corridors is very complex and diverse as the propagation effects in the indoor scenarios are those that change over fractions of wavelength. Therefore, understanding of RF propagation characteristics is vital for the design of air interface and estimation of propagation losses is very much needed especially for wireless networks such as randomly deplorable Wireless Sensor Communications. In this research work, short-range, near floor/ground RF propagation path loss measurements at low antenna heights of 2 cm and 50 cm from the floor were made in typical narrow and wide straight indoor corridors at 915/2400MHz in a modern multi-storied building utilizing RF equipment. Comparisons between measured and simulated path loss values were made utilizing Matlab simulations of Ray-tracing technique, free space and ITU-R models. Mean path loss exponent values were deduced from the measured data. The research work reported in this paper is predominately geared towards characterizing radio link for Wireless Sensor Communications/Networks in typical indoor corridor environments.
منابع مشابه
Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz
IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effectiv...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملDynamic 3-D Indoor Radio Propagation Model and Applications with Radios from 433 MHZ to 2.4 GHz
Proliferation of indoor sensor infrastructure has created a new niche for mobile communications, yet research in indoor radio propagation still has not generated a definite model that is able to 1) precisely capture radio signatures in 3-D environments and 2) effectively apply to radios at a wide range of frequency bands. This paper first introduces the impact of wall obstructions on indoor rad...
متن کاملPropagation Path Loss and Materials Insertion Loss in Indoor Environment at WiMAX Band of 3.3 to 3.6 GHz
The purpose of this study is to characterize the indoor channel for IEEE 802.16 (WiMAX) at 3.3 to 3.6 GHz frequency. This work presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, wide corridor and semi open corridor. Path loss equations are determined using log-distance path loss model and a Rayleigh multipa...
متن کاملAdaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity
Background: Over the past few years, the rapid use of high frequency electromagnetic fields like mobile phones has raised global concerns about the negative health effects of its use. Adaptive response is the ability of a cell or tissue to better resist stress damage by prior exposure to a lesser amount of stress. This study aimed to assess whether radiofrequency radiation can induce adaptive r...
متن کامل